BerandaTentukan luas bayangan setiap benda berikut hasil ...PertanyaanTentukan luas bayangan setiap benda berikut hasil dilatasi dengan faktor skala k = 2 dan pusat di titik O 0 , 0 . c. Layang-layang A β 3 , 0 , B 0 , 5 , C 3 , 0 , dan D 0 , β 7 .Tentukan luas bayangan setiap benda berikut hasil dilatasi dengan faktor skala dan pusat di titik . c. Layang-layang , dan . RRR. RGFLLIMAMaster TeacherJawabanluas bayangan layang-layang ABCD adalah 144 satuan Luasluas bayangan layang-layang ABCD adalah 144 satuan LuasPembahasanJawaban Jadi, luas bayangan layang-layang ABCD adalah 144 satuan Luas Jawaban Jadi, luas bayangan layang-layang ABCD adalah 144 satuan Luas Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!569Yuk, beri rating untuk berterima kasih pada penjawab soal!Β©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
bayangansegitiga tersebut akibat pencerminan terhadap titik asal! 4. Tentukanlah bayangan titik A(6,3) akibat diputar dengan aturan sebagai berikut: a. 90 dengan pusat O(0,0). b. 180 dengan pusat O(0,0). c. 90 dengan pusat P(1,2). d. -90 dengan pusat O(0,0). 5. Dengan menggunakan matriks operator, tentukan bayangan segitiga PQR dengan titik sudut
Hai sobat Belajar MTK β Jika Anda adalah suka dengan pelajaran matematika, maka Anda perlu tahu tentang rumus perbesaran dilatasi dan contoh soalnya. Mungkin istilah dilatasi masih cukup asing bagi Anda yang baru saja akan mempelajarinya. Padahal, istilah ini sebenarnya masih berkaitan dengan gambar-gambar geometris dalam matematika. Namun, diperlukan penalaran lebih untuk memahami maksudnya. Dilatasi sendiri memiliki kata lain yakni pembesaran atau perkalian. Jadi, dalam bab ini akan dibahas bagaimana perkecilan dan perbesaran suatu bangun. Nah, agar Anda tidak bingung, Anda bisa menyimak ulasan di bawah ini mengenai pengertian, rumus, hingga contoh soal beserta jawabannya. Pengertian, Rumus Perbesaran Dilatasi Dan Contoh Soalnya A. Pengertian dari Dilatasi Apa itu Dilatasi? Dilatasi adalah Sebuah transformasi yang dilakukan untuk mengubah ukuran suatu bangun dengan cara memperkecil ataupun memperbesar, namun tidak mengubah bentuk yang berkaitan. Dilatasi ini sendiri bisa Anda tentukan dengan menganalisis titik pusat dan juga faktor dilatasi. Transformasi perubahan ukuran ini ditentukan oleh titik pusat dilatasi dan juga faktor dilatasi yang telah disebutkan sebelumnya yang mana notasinya adalah O 0,0 untuk titik pusat dan k O,k untuk faktor skala. Baca juga Pencerminan Terhadap Sumbu X dan Sumbu Y Contohnya Lalu, apa yang dimaksud dengan titik dilasi? Ini adalah sebuah titik yang dapat menentukan posisi dilatasi yang mana menjadi poin pertemuan dari semua garis lurus. Garis lurus tersebut saling menghubungkan titik-titik dalam suatu bentuk atau dengan kata lain ia adalah hasil dari titik dilatasi. Sedangkan faktor dilasi merupakan faktor perkalian atau multiplikasi dari struktur-struktur bangun geometri yang telah dilatasi. Dari faktor ini, dapat diketahui seberapa besar hasil yang ditunjukkan, lalu diperluas menjadi bentuk geometris dengan lambang k. Jika k>1 lebih dari satu atau kAβ kx, ky Setelah mengetahui gambaran umum mengenai dilatasi, maka Anda juga perlu tahu sifat dari dilatasi ini sendiri. Berikut adalah sifat-sifatnya Untuk k>1 bangun bayangan diperbesar dan letaknya sepihak dengan pusat yang dilatasi dan bangun awal. 01 mengartikan bahwa benda diperbesar. Sedangkan nilai 0<Ηkl<1 yang mengartikan bahwa benda diperkecil. D. Contoh Soal Dilatasi Untuk mengetahui seberapa jauh pemahaman Anda, Anda bisa menyimak contoh soal yang ada di bawah ini Contoh Soal 1 Sebuah persegi ABCD yang memiliki titik sudut yakni A1,4, B3,4, C3,1 dan D 1,1. Jika persegi tersebut dilatasi atau diperbesar 2 kali dengan titik pusat 0,0, tentukan bayangan bangun tersebut. Rumus Perbesaran Dilatasi dan Contoh Soalnya Penyelesaian Diketahui Titik sudut A = 1,4 Titik sudut B = 3,4 Titik sudut C = 3,1 Titik sudut D = 1,1 Cara Masing-masing dikalikan 2 A = 2 x 1,4 = 2,8 B = 2 x 3,4 = 6,8 C = 2 x 3,1= 6,2 D = 2 x 1,1= 2,2 Contoh Soal 2 Ada sebuah Persegi yang memiliki titik sudut yakni A4,6, B 14,2, dan juga C -4,10. Jika segitiga tersebut dilatasi dengan titik pusat 0,0, tentukan bayangan bangun tersebut. Penyelesaian Diketahui Titik sudut A = 4,6 Titik sudut B = 14,2 Titik sudut C = -4,10 Cara Masing-masing dikalikan 3 A = 3 x 4,6 = 12,27 B = 3 x 14,2 = 42,6 C = 3 x -4,-10 = -12,-30 Contoh Soal 3 Ada sebuah segitiga ABC yang memiliki titik sudut yakni A4,6, B 14,2, dan juga C -4,10. Jika segitiga tersebut dilatasi dengan titik pusat 0,0, tentukan bayangan bangun tersebut. Penyelesaian Diketahui Titik sudut A = 4,6 Titik sudut B = 14,2 Titik sudut C = -4,10 Cara Masing-masing dikalikan 3 A = 3 x 4,6 = 12,27 B = 3 x 14,2 = 42,6 C = 3 x -4,-10 = -12,-30 Contoh Soal 2 Ada segitiga ABC dengan titik sudut berurutan 4,6, 14,2, dan -4,10. Jika ia dilatasi angka 3 dengan pusat M yaitu 1,3, maka tentukan bayangannya atau AβBβCβ! Diketahui Titik sudut A = 4,6 Titik sudut B = 14,2 Titik sudut C = -4,10 Nilai a,b adalah pusat yang dilatasi = 1,3 Cara xβ = 3 4-1 + 1 = 10 yβ = 3 6-1 + 1 = 16 Maka, nilai Aβ dapat diperoleh sebesar 10,16, lakukan hal tersebut untuk B dan C. Maka, Anda akan mengetahui hasilnya. Baca juga Pencerminan Terhadap Garis x=h dan y=k Beserta Contohnya Nah, setelah mengetahui pembahasan mengenai rumus perbesaran dilatasi dan contoh soalnya, tentu sekarang sudah tidak bingung lagi bukan? Inilah saatnya Anda perlu berlatih beberapa soal agar lebih paham. Selamat mencoba! Berikut kalkulator rumus perbesaran dilatasi terhadap sumbu 0,0 silahkan dicoba
ο»ΏSebelummembahas lebih lanjut tentang luas bayangan bangun ruang, mari kita ingat kembali cara menghitung luas segitiga jika diketahui koordinat ketiga titik sudutnya. Luas segitiga ABC dengan koordinat titik-titik sudut A(x1, y1), B(x2, y2), dan C(x3, y3) dapat ditentukan dengan menggunakan rumus berikut:
Hai Quipperian, bagaimana kabarnya? Semoga selalu sehat, ya. Pernahkah kamu memanfaatkan tools zoom/perbesaran saat sedang memfoto suatu objek? Jika kamu memperbesar suatu objek melalui kamera, pasti akan muncul keterangan 1,5x; 2x; 3,5x; 3,9x; dan seterusnya kan? Di dalam Matematika, keterangan 2x atau 4x itu merupakan faktor pengali sementara proses perbesaran yang kamu lakukan disebut dilatasi. Lalu, apa yang dimaksud dilatasi itu? Daripada penasaran, yuk simak selengkapnya! Pengertian Dilatasi Dilatasi adalah perubahan titik suatu objek pada bidang geometri berdasarkan nilai faktor pengalinya. Pada transformasi jenis ini, ukuran bayangan bisa berbeda dengan ukuran bendanya. Namun, bisa juga ukuran bayangannya tetap. Namun, bentuknya tetap sama, ya. Mengapa demikian? Hal itu karena adanya faktor pengali. Misalnya suatu objek diperbesar dengan faktor pengali = 2, maka bayangan objek tersebut memiliki ukuran dua kali ukuran objek mula-mula dan jarak bayangan terhadap titik pusatnya juga dua kali lebih jauh dari jarak objek dan titik pusat mula-mula. Faktor Pengali Pada Dilatasi Faktor pengali merupakan faktor penentu letak dan ukuran suatu objek hasil dilatasi. Lalu, seperti apa hubungan antara dilatasi dan faktor pengali? Faktor pengali lebih besar dari satu k > 1 akan mengakibatkan pembesaran ukuran objek dan searah dengan sudut dilatasi objek awalnya. Faktor pengali sama dengan satu k = 1 tidak mengakibatkan perubahan ukuran atau posisi objek. Faktor pengali antara 0 dan 1 0 < k < 1 mengakibatkan pengecilan ukuran objek dan searah dengan sudut dilatasi awalnya. Faktor pengali antara -1 dan 0 -1 < k < 0 mengakibatkan pengecilan ukuran objek dan memiliki arah yang berlawanan dengan sudut dilatasi awalnya. Faktor pengali sama dengan -1 k = -1 tidak mengakibatkan perubahan ukuran objek, namun arahnya berlawanan dengan sudut dilatasi awalnya. Faktor pengali lebih kecil dari -1 k < β 1 mengakibatkan pembesaran ukuran objek dan memiliki arah berlawanan dengan sudut dilatasi awalnya. Jenis-Jenis Dilatasi Berdasarkan titik pusatnya, dilatasi dibagi menjadi dua, yaitu dilatasi terhadap titik pusat 0, 0 dan dilatasi terhadap titik pusat a, b. Apa perbedaan antara keduanya? Dilatasi Terhadap Titik Pusat 0, 0 Bentuk umum dilatasi titik A terhadap titik pusat 0, 0 bisa dinyatakan sebagai berikut. Bentuk penulisan di atas menunjukkan bahwa titik A yang berkoordinat x, y mengalami dilatasi terhadap titik pusat 0, 0 dengan faktor pengali k, sehingga menghasilkan titik Aβ yang berkoordinat xβ, yβ. Nah, koordinat xβ, yβ, kamu bisa tentukan menggunakan persamaan matriks seperti di bawah ini. Agar semakin paham, simak contoh soalnya ya. Suatu objek berbentuk persegipanjang PQRS berada di bidang koordinat Cartesius seperti berikut. Jika objek tersebut didilatasikan terhadap titik pusat dengan k = 2, tentukan bentuk bayangan yang terjadi! Pembahasan Mula-mula, tentukan dahulu koordinat titik P, titik Q, titik R, dan titik S seperti pada tabel. TitikKoordinatP1, 3Q4, 3R1, 2S4, 2 Selanjutnya, tentukan koordinat titik Pβ, titik Qβ, titik Rβ, dan titik Sβ dengan persamaan dilatasi terhadap titik pusat. Titik Pβ Dengan demikian Pβ = 2, 6 Titik Qβ Dengan demikian Qβ = 8, 6 Titik Rβ Dengan demikian Rβ = 2, 4 Titik Sβ Dengan demikian Sβ = 8, 4 Diperoleh Titik awalKoordinatTitik akhirKoordinatP1, 3Pβ2, 6Q4, 3Qβ8, 6R1, 2Rβ2, 4S4, 2Sβ8, 4 Jika digambarkan dalam koordinat Cartesius menjadi Terlihat kan jika gambar objeknya mengalami pembesaran dengan arah yang sama dengan sudut dilatasi awalnya? Sampai sini, apakah Quipperian sudah paham? Jika sudah, yuk lanjut ke pembahasan selanjutnya. Dilatasi Terhadap Titik Pusat a, b Jika titik A mengalami dilatasi terhadap titik pusat a, b dengan faktor pengali k, maka secara matematis bisa dinyatakan sebagai Lalu, bagaimana cara menentukan koordinat akhir dilatasinya? Koordinat akhir bisa dicari dengan persamaan matriks berikut. Agar kamu semakin paham, yuk simak contoh soalnya. Suatu segitiga ABC memiliki titik koordinat sebagai berikut. Titik A = 4, 6 Titik B = 2, 2 Titik C = 6, 2 Jika segitiga tersebut didilatasi terhadap titik pusat 2, -2 dengan faktor pengali = -1/2, tentukan gambar objek beserta hasil dilatasinya! Pembahasan Sebelum mengeplot titik A, B, dan C pada koordinat Cartesius, sebaiknya tentukan dulu koordinat hasil dilatasinya, ya. Koordinat titik Aβ Diketahui titik A 4, 6, k = -1/2 Dengan demikian, Aβ = 1, -6. Koordinat titik Bβ Diketahui titik B 2, 2, k = -1/2 Dengan demikian, Bβ = 2, -4. Koordinat titik Cβ Diketahui titik C 6, 2, k = -1/2 Dengan demikian, Cβ = 0, -4. Jika titik-titik tersebut disubstitusikan ke dalam koordinat Cartesius, akan diperoleh gambar seperti berikut. Oleh karena faktor dilatasinya k = -1/2, maka bayangan objeknya diperkecil dengan arah sudut dilatasi berlawanan terhadap sudut dilatasi semula. Contoh Soal Untuk mengasah pemahamanmu, yuk simak contoh soal seperti di bawah ini. Contoh Soal 1 Suatu titik Q 6,3 mengalami dilatasi terhadap pusat 3, -5. Jika faktor pengalinya -1, tentukan koordinat akhir titik Q. Pembahasan Untuk mencari koordinat akhir titik Q, gunakan persamaan berikut ini. Jadi, koordinat akhir titik Q atau titik Qβ -2, -6. Contoh Soal 2 Suatu bangun persegi PQRS memiliki koordinat masing-masing seperti berikut. Titik P2,-2 Titik Q4,-2 Titik R2, -4 Titik S4,-4 Bangun tersebut ditranslasikan terhadap titik pusat 0,0 dengan faktor pengali 3/2. Gambarkan dilatasi bangun persegi PQRS tersebut! Pembahasan Pertama, kamu harus menentukan koordinat akhir masing-masing titik. Titik Pβ Dengan demikian, koordinat titik Pβ = 3,-3. Titik Qβ Dengan demikian, koordinat titik Qβ = 6,-3. Titik Rβ Dengan demikian, koordinat titik Rβ = 3,-6. Titik Sβ Dengan demikian, koordinat titik Rβ = 6, -6. Jika kedua bangun digambarkan dalam koordinat Cartesius, diperoleh gambar seperti berikut. Contoh Soal 3 Titik A yang berkoordinat 3, 9 mengalami dilatasi terhadap titik pusat a, b dengan faktor pengali 2, sehingga diperoleh koordinat akhir Aβ 5, 16. Tentukan koordinat titik pusat dilatasinya! Pembahasan Diketahui x = 3 y = 9 k = 2 xβ = 5 yβ = 16 Ditanya a, b =β¦? Jawab Untuk menentukan titik pusat dilatasinya, gunakan persamaan dilatasi terhadap titik pusat a, b seperti berikut. Dari persamaan di atas, diperoleh 5 = 6 β 2a + a β a = 1 16 = 18 β 2b + b β b = 2 Dengan demikian, diperoleh a = 1 dan b = 2. Jadi, koordinat titik pusat a, b adalah 1, 2. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
Mencariluas segitiga abc setelah dilatasi faktor skala 3. Contoh soal transformasi geometri luas bangun datar : Ada sebuah segitiga abc yang memiliki titik sudut yakni a(4,6), b (14,2), . 14 contoh soal luas segitiga hasil dilatasi kumpulan contoh soal. Mencari luas segitiga abc jika diketahui koordinat titik a b dan c nya maka kita dapat
Rumus Dilatasi - Setelah sebelumnya kita telah membahas tentang cara menentukan gradien kali ini kita akan membahas materi tentang rumus dilatasi, kita akan paparkan secara rinci dan berurutan mulai dari pengertian, sifat-sifat, rumus, dan contoh soal beserta DilatasiDilatasi pembesaran atau perkalian adalah suatu transformasi atau perubahan yang mengubah ukuran memperkecil atau memperbesar suatu bangun tetapi tidak mengubah bentuk bangun yang bersangkutan. Dilatasi dapat ditentukan oleh titik pusat dan faktor faktor skala merupakan suatu transformasi mengubah ukuran memperbesar atau memperkecil bentuk bangun geometri tetapi tidak mengubah bentuk bangun tersebut. Dilatasi dapat ditentukan oleh titik pusat dilatasi dan faktor skala atau faktordilatasi. Notasi dilatasi dengan titik pusat O0, 0 dan faktor skala k adalah [O, k].Sifat-Sifat DilatasiTafsiran Geometri dari DilatasiPerkalian atau dilatasi adalah suatu transformasi yang mengubah jarak titik-titikdengan faktor pengali tertentu terhadap suatu titik tertentu. Faktor pengali tersebut disebutfaktor dilatasi atau faktor skala dan titik tertentu itu dinamakan pusat demikian dapat dikatakan bahwa suatu dilatasi ditentukan oleh1Faktor skala k, dan2Pusat dilatasi Jika yang dilatasikan suatu bangun, maka dilatasi akan mengubah ukuran tanpamengubah bentuk bangun tersebut. Dilatasi yang berpusat di P dengan faktor skala kdinotasikan dengan [P,k].Sifat-sifat dilatasi antara lainJika k > 1,maka bangun bayangan diperbesar dan terletak sepihak terhadap pusat dilatasi dan bangun 0 1 jadi benda diperbesar. Dan untuk nilai 0 1/2 yβ = 1/2 xβ 2+ 51/2 xβ β Soal DilatasiDiketahui sebuah segitiga ABC dengan titik sudut A 2,3, B 7,1 dan C-2,-5. Jika segitiga ABC tersebut di-dilatasi 3 dengan pusat M 1,3. Tentukanlah bayangan segitiga ABC atau AβBβCβ. Hitunglah luas segitiga yang Nilai a,b merupakan pusat dilatasi yaitu 1,3. kita akan menggunakan rumus di atas. Sekarang akan ambil untuk titik A terlebih = 32-1 + 1 = 4 dan yβ = 33-1+1 = 7. Maka Aβ 4,7 Lakukan hal yang sama untuk titik B dan pembahasan soal-soal tentang rumus dilatasi melalui video berikutDemikianlah pembahasan lengkap mengenai materi tentang rumus dilatasi, Semoga Bermanfaatβ¦
AplikasiLainnya. Februari 01, 2021. 50+ Contoh Soal Dilatasi Segitiga. Berikut ini rangkuman contoh soal transformasi geometri (translasi, refleksi, rotasi, dilatasi) pilihan ganda jawaban beserta penyelesaian. Segitiga abc dengan a (2,1), b (6,1), c (6,4) ditransformasikan dengan matriks transformasi luas bangun hasil transformasi segitiga
Anda telah mempelajari tiga jenis transformasi, yaitu translasi, refleksi, dan rotasi. Ketiga jenis transformasi ini termasuk transformasi isometri, yaitu transformasi yang menghasilkan bayangan kongruen sama ukuran dan sebangun dengan benda. Sekarang, Anda akan mempelajari transformasi keempat, yaitu dilatasi yang mengubah ukuran memperbesar atau memperkecil tetapi tidak mengubah bentuk. Dilatasi tidak termasuk transformasi isometri karena tidak menghasilkan bayangan yang kongruen. β Contoh Soal Deret Aritmatika Beserta Jawabannya LENGKAP β Contoh Soal Deret Aritmatika Beserta Jawabannya LENGKAPPengertianβ Hukum kesetimbangan kimia Pengertian, Faktor dan ContohnyaDilatasi terhadap Titik Pusat O0,0Contoh Soal dilatasi Barisan Geometri Pengertian, Rumus dan Contoh SoalDilatasi terhadap Titik Pusat Pa, bContoh Soal dilatasi Barisan Aritmetika Rumus, Ciri dan Contoh SoalSebarkan iniPosting terkait Pengertian Dilatasi perkalian adalah suatu transformasi yang memindahkan suatu titik pada bangun geometri yang bergantung pada titik pusat dilatasi dan faktor skala dilatasi. Akibatnya, bayangan dari bangun geometri yang didilatasi berubah ukurannya membesar atau mengecil. Untuk mudahnya, bayangkan bangun yang didilatasi adalah mobil yang sedang melaju ke arah Anda. Dari jauh mobil tampak kecil. Ketika mendekat mobil tampak semakin besar, dan ketika menjauh mobil tampak mengecil kembali. Dilatasi dapat pula dianalogikan dengan mendekatkan suatu objek atau menjauhkan suatu objek dari Anda. Perhatikan Gambar dibawah ini dari titik pusat dilatasi O, yaitu perpotongan antara tembok dengan lantai. Tinggi lemari mula-mula menurut orang yang sedang berdiri adalah 1m. Pada gambar b, lemari dipindahkan ke arah orang yang sedang berdiri sejauh 2m. Jarak lemari dengan titik pusat dilatasi menjadi 4m atau 2 kali posisi mula-mula. Lemari tampak membesar. Tinggi lemari menjadi 2m atau 2 tinggi mula-mula. Dengan demikian lemari dikatakan mengalami dilatasi dengan titik pusat O dan faktor dilatasi 2. Begitu juga ketika lemari dipindahkan ke arah kiri sejauh 1 m dari posisi awalnya. Jarak lemari dengan titik pusat dilatasi β Hukum kesetimbangan kimia Pengertian, Faktor dan Contohnya Apa yang dimaksud dengan faktor dilatasi? Faktor dilatasi adalah perbandingan antara jarak bayangan dari pusat dilatasi dengan jarak titik mula-mula dari titik pusat dilatasi. Misalkan k adalah faktor dilatasi maka berlaku hubungan berikut. jika k>1 maka bangun bayangan diperbesar dan terletak sepihak terhadap pusat dilatasi dan bangun semula. jika 0
Luasbayangan segitiga ABC dengan A(2,1),B(6,1),C(4,4) oleh dilatasi terhadap 0 dengan faktor skala 3 adalah - 13689019 Dilatasi (0,3) Maka: L.Bayangannya= 3Β².6=9.6= 54 satuan luas Jadikan Jawaban Terbaik Ya Semoga Membantu pengen tau kak, cara mencari tinggi sama alas nya sama tingginya gimana ya? masih nggak paham ToT Iklan Iklan
Dilatasi merupakan bagian dari transformasi geometri. Untuk dilatasi perubahan yang terjadi meliputi perubahan ukuran/skala sehingga luas dan keliling ataupun volum bangun tersebut berubah. Namun untuk bentuk benda tidak akan berubah. Misalkan sebuah persegi di dilatasi, maka hasilnya tetap persegi. Yang berubah hanya ukuran sisi persegi. Dalam dilatasi akan ada titik acuan. Pertama titik acuan 0,0 atau disebut dengan dilatasi dengan pusat O 0,0. Kedua dilatasi dengan pusat a,b. Dalam hal ini a , b bukan 0,0. a,b merupakan sebuah titik dengan nilai koordinat. Notasi dilatasi Dilatasi dengan Titik Pusat 0,0 [ O,k] Titik acuan atau patokan diambil 0,0. Secara umum untuk mencari bayangan x',y' dari titik asal x,y bisa digunakan rumus k disini adalah faktor dilatasi atau perbesaran objek dilatasi. Untuk nilai k > 1 maka benda diperbesar. Untuk nilai 0 1/2 y' = 1/2 x' 2+ 51/2 x' - 6. Untuk perapihan selanjutnya silahkan dilanjutkan sendiri. Contoh Soal Dilatasi x,y dengan pusat a,b Titik acuan atau patokan diambil a,b. Secara umum untuk mencari bayangan x',y' dari titik asal x,y bisa digunakan rumus x' = kx-a + a dan y'= ky-b+b k disini adalah faktor dilatasi atau perbesaran objek dilatasi. Untuk nilai k > 1 maka benda diperbesar. Untuk nilai 0 y'-1/2 = x'+2/2 2+ 5 x'+2/2 - 6. Untuk perapihan selanjutnya menjadi tugas anda, karena saya hanya menjelaskan prinsip dilatasi, bukan menyelesaikan sebuah persamaan . Untuk mempermudah, sebenarnya telah ada kalkulator untuk menghitung dilatasi. Bisa anda lihat dan gunakan di Kalkulator untuk Menghitung Transformasi Geometri.
kBCpmw. 1ykydgq46v.pages.dev/4301ykydgq46v.pages.dev/71ykydgq46v.pages.dev/391ykydgq46v.pages.dev/4841ykydgq46v.pages.dev/91ykydgq46v.pages.dev/861ykydgq46v.pages.dev/1061ykydgq46v.pages.dev/109
cara menghitung luas bayangan segitiga hasil dilatasi